New Compounds with Platinum to Silver Bonds Unsupported by Covalent Bridges

Rafael Usón,* Juan Forniés, Milagros Tomás, and José M. Casas

Department of Inorganic Chemistry University of Zaragoza, Zaragoza, Spain

F. Albert Cotton* and Larry R. Falvello

Department of Chemistry and Laboratory for Molecular Structure and Bonding Texas A\&M University, College Station, Texas 77843 Received December 12, 1984
The chemistry of heteronuclear silver-platinum cluster complexes, containing homo- and/or heteronuclear metal-metal bonds, has been undergoing rapid development recently in our laboratories. ${ }^{1,2}$ The use of $\mathrm{C}_{6} \mathrm{X}_{5}^{-}$in the starting anionic platinum complexes is a critical factor in this chemistry. We have already reported ${ }^{1}$ the preparation and structure of the compound $\left(\mathrm{NBu}_{4}\right)_{2}\left[\mathrm{Pt}_{2} \mathrm{Ag}_{2} \mathrm{Cl}_{4}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]$, obtained by the (1:1) reaction between $\left(\mathrm{NBu}_{4}\right)_{2}\left[\mathrm{PtCl}_{2}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\right]$ and AgNO_{3} (or AgClO_{4}), in which there are $\mathrm{Pt}-\mathrm{Ag}$ bonds (2.772 (3) \AA) and also, perhaps, weak $\mathrm{Ag}-\mathrm{Ag}$ bonds (2.994 (6) \AA). In several other compounds ${ }^{2}$ we have found $\mathrm{Pt}-\mathrm{Ag}$ bonds (all supported by bridging ligands), with lengths of about $2.79 \AA$. We now wish to report two new compounds, prepared from anionic (pentafluorophenyl)platinum precursors, in which there are $\mathrm{Pt}-\mathrm{Ag}$ bonds entirely unsupported by any covalent bridging ligands.

Compound $1\left(\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{~S}\right)\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3} \mathrm{PtAgP}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}$, is a colorless crystalline air-stable solid, ${ }^{3}$ prepared by reaction 1. Its structure
$\left(\mathrm{NBu}_{4}\right)\left[\mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}\left(\mathrm{SC}_{4} \mathrm{H}_{8}\right)\right]+\mathrm{O}_{3} \mathrm{ClOAgP}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3} \xrightarrow{\mathrm{CH}_{2} \mathrm{Cl}_{2}}$

$$
\mathrm{NBu}_{4} \mathrm{ClO}_{4}+\left[\left(\mathrm{SC}_{4} \mathrm{H}_{8}\right)\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3} \operatorname{PtAgP}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\right]
$$

(Figure 1) has been determined ${ }^{4}$ There is a direct, unbridged $\mathrm{Pt}-\mathrm{Ag}$ bond, which, at 2.637 (1) \AA, is shorter than any previously known $\mathrm{Pt}-\mathrm{Ag}$ bond. The platinum atom is coordinaed by a square array of three $\mathrm{C}_{6} \mathrm{~F}_{5}$ groups and a tetrahydrothiophene molecule, with the platinum atom in the ligand-atom plane. The $\mathrm{Pt}-\mathrm{Ag}$ bond is approximately perpendicular to this plane, with $\mathrm{Ag}-\mathrm{Pt}-\mathrm{L}$ angles ranging between 88° and 99°. The $\mathrm{Pt}-\mathrm{Ag}-\mathrm{P}$ angle is 174.3 (1) ${ }^{\circ}$.

One ortho fluorine atom of each $\mathrm{C}_{6} \mathrm{~F}_{5}$ group makes a close contact with the silver atom: $\mathrm{Ag} \cdots \mathrm{F}(6)=2.757$ (7) \AA; $\mathrm{Ag} \cdots \mathrm{F}(11)$ $=2.791(7) \AA ; A g \cdots F(1)=2.763$ (8) \AA. As before, ${ }^{1}$ the reasons for and effects of these contacts are not obvious, but they possibly facilitate attractive forces that contribute to the stability of the molecule. The ring containing $\mathrm{F}(1)$ is tilted $\left(39^{\circ}\right)$ from the $\mathrm{Pt}-\mathrm{Ag}-\mathrm{C}(1)$ plane, and the $\mathrm{C}(1)-\mathrm{Pt}-\mathrm{Ag}$ angle $\left(88^{\circ}\right)$ is smaller than the other two $\mathrm{C}-\mathrm{Pt}-\mathrm{Ag}$ angles $\left(97^{\circ}, 98^{\circ} .5^{\circ}\right)$. Hence, the Ag. $\cdots F(1)$ distance is similar to the other two $\mathrm{Ag} \cdots \mathrm{F}$ distances. Eliminating the twist of the ring would yield a series of unacceptable contacts. ${ }^{5}$ In summary, avoidance of repulsive contacts while maintaining three Ag...F contacts appears to account for all conformational features of this molecule.

It seems sensible to assign formal oxidation numbers of I and II to Ag and Pt , respectively, and assign a bond order of 1 to the $\mathrm{Pt}-\mathrm{Ag}$ bond. ${ }^{6-9}$ Further chemical and physical studies of this

[^0]

Figure 1. $\left(\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{~S}\right)\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3} \mathrm{Pt} \mathrm{AgP}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}$ molecule. All carbon and fluorine atoms are represented by arbitrarily small circles for clarity.

Figure 2. $\left[\mathrm{Pt}_{2} \mathrm{Ag}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{6}\left(\mathrm{Et}_{2} \mathrm{O}\right)\right]^{-}$a nion. All nonmetal atoms are represented by arbitrarily small circles for clarity.
molecule are in progress, including an NMR study of Pt, Ag, and P nuclear couplings.

Compound 2, $\left(\mathrm{NBu}_{4}\right)\left[\mathrm{Pt}_{2} \mathrm{Ag}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{6}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{O}\right] \cdot\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{O}$, is a yellow solid, ${ }^{10}$ prepared according to eq 2 and recrystallized from

$$
\begin{align*}
& 2\left(\mathrm{NBu}_{4}\right)_{2}\left[\mathrm{PtCl}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}\right] \xrightarrow{\mathrm{AgClO}_{4}, \text { in } \mathrm{CH}_{2} \mathrm{Cl}_{2}} 2 \mathrm{ABL} \mathrm{ClO}_{4}+\left(\mathrm{NBu}_{4}\right)\left[\mathrm{Pt}_{2} \mathrm{Ag}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{6}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{O}\right] \cdot\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{O}
\end{align*}
$$

an ether-hexane mixture. The presence of ether is verified by ${ }^{1} \mathrm{H}$ NMR. The structure of the $\left.\left[\mathrm{Pt}_{2} \mathrm{Ag}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\right)_{6}\left(\mathrm{Et}_{2} \mathrm{O}\right)\right]^{-}$anion, determined by X-ray crystallography, ${ }^{11}$ is shown in Figure 2.

The structure of the trinuclear anion in 2 displays unusual features which make this species a challenge for bonding theory. Pairs of $\operatorname{Pt}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}^{-}$units that formally result after the abstraction of Cl^{-}from the starting anion are united through bridging $\mathrm{C}_{6} \mathrm{~F}_{5}$ groups so that each Pt atom has roughly (see below) square-pyramidal coordination. The Pt atoms are only 2.698 (1) \AA apart,

[^1]which would imply either that a $\mathrm{Pt}-\mathrm{Pt}$ bond exists or that the spread of the bridging $\mathrm{C}_{6} \mathrm{~F}_{5}$ groups (both $\mathrm{Pt}-\mathrm{C}-\mathrm{Pt}$ angles $=74.1^{\circ}$) forces the two Pt atoms to this distance. This is the first case in which a $\mathrm{C}_{6} \mathrm{~F}_{5}$ group has been proved to act as a bridging ligand, but some complexes containing bridging phenyl groups have been structurally characterized. ${ }^{12}$ In addition, the $\mathrm{Pt}-\mathrm{Ag}$ distances, 2.827 (2) and 2.815 (2) \AA, together with the fact that there are no ligands serving as bridges across the $\mathrm{Pt}-\mathrm{Ag}$ edges of the $\mathrm{Pt}_{2} \mathrm{Ag}$ triangle, imply that there are also $\mathrm{Pt}-\mathrm{Ag}$ bonds. Of course, fractional bond orders may well prevail in the $\mathrm{Pt}-\mathrm{Pt}$ and $\mathrm{Pt}-\mathrm{Ag}$ bonds. If the Pt and Ag atoms are assigned formal oxidation numbers of II and I, respectively, a total of four electrons would be available for the set of metal-metal bonds.

There are close approaches of ortho F atoms (from the bridging groups) to the silver atom: $\mathrm{Ag} \cdots \mathrm{F}(5), 2.66$ (1) $\AA ; A g-\mathrm{F}$ (10), 2.67 (1) \AA. The $\mathrm{Pt}-\mathrm{C}$ distances to the terminal $\mathrm{C}_{6} \mathrm{~F}_{5}$ groups are 2.02 and $2.06 \AA$. The $\mathrm{Pt}-\mathrm{C}_{\text {bridge }}$ distances are longer, but they are distinctly unequal ($\mathrm{C}(1)-\operatorname{Pt}(1), 2.28$ (2) $\AA ; \mathrm{C}(1)-\mathrm{Pt}(2), 2.19$ (2) $\AA ; \mathrm{C}(7)-\mathrm{Pt}(1), 2.20$ (2) $\AA ; \mathrm{C}(7)-\mathrm{Pt}(2), 2.28$ (2) \AA), so that each $\mathrm{Pt}-\mathrm{C}-\mathrm{Pt}$ unit is unsymmetrical. Each $\mathrm{C}_{6} \mathrm{~F}_{5}$ bridging group is practically perpendicular to the $\mathrm{Pt}_{2} \mathrm{Ag}$ plane, with dihedral angles of 96.7° and 98.3°. The dihedral angle between $\mathrm{Pt}(1)-$ $\mathrm{C}(1)-\mathrm{Pt}(2)$ and $\mathrm{Pt}(1)-\mathrm{C}(7)-\mathrm{Pt}(2)$ is 30.0°.

Acknowledgment. We thank the CAICYT (Spain) and the U. S. National Science Foundation for support.

Supplementary Material Available: Tables of atomic positional parameters for both structures (7 pages). Ordering information is given on any current masthead page.

[^2]
Selectivity and Charge Transfer in Photoreactions of α, α, α-Trifluorotoluene with Olefins ${ }^{\dagger}$

Jochen Mattay, * Jan Runsink, Thomas Rumbach, Cuong Ly, and Joachim Gersdorf

Institut für Organische Chemie der RWTH Aachen Prof.-Pirlet-Str. 1, D-5100 Aachen, West Germany

Received September 19, 1984

We have recently shown that charge transfer may influence the selectivity of product formation in various bimolecular photoreactions. ${ }^{1,2}$ In extension of these investigations we have studied the photoreactions of α, α, α-trifluorotoluene (1) with the olefins 2 and 6 and we have found striking changes in the mode of reaction. ${ }^{3}$ In this paper we wish to present the first example of $\mathrm{C}-\mathrm{F}$ bond breakage of α-fluorinated alkyl arenes during a photoaddition reaction. ${ }^{4-7}$ Furthermore the change of reactivity will

[^3]Scheme I. Products of Photoreactions between $\alpha, \alpha, \alpha-$ Trifluorotoluene (1) and the Olefins 2

Table I. Free Enthalpies of Electron Transfer and Mode of Photoreactions of α, α, α-Trifluorotoluene (1) with Various Olefins

			${\text { reaction mode }{ }^{c}} \quad$	
olefin	$E_{1 / 2},{ }^{a} \mathrm{~V}$	$\Delta G,{ }^{b} \mathrm{eV}$	substitution	cycloaddition
$\mathbf{2 a}$	+0.42	-0.23	+	-
$\mathbf{2 b}$	+0.48	-0.17	+	-
$\mathbf{2} \mathbf{c}$	+0.69	+0.04	+	-
$\mathbf{2 d}$	+0.76	+0.11	+	ortho, meta
$\mathbf{6 a}$	+1.47	+0.82	-	meta
$\mathbf{5}$	+1.83	+1.18	-	meta
$\mathbf{6} \mathbf{b}^{d}$	-2.64	+1.72	-	meta

${ }^{a}$ Oxidation (reduction) potentials (vs. $\mathrm{Ag} / \mathrm{AgNO}_{3}$ electrode) were measured by cyclic voltametry (Pt working electrode) in acetonitrile: c (olefin) $1 \mathrm{mmol} \mathrm{L}{ }^{-1}, \mathrm{c}\left(\mathrm{LiClO}_{4}\right) 0.1 \mathrm{~mol} \mathrm{~L}{ }^{-1}$. ${ }^{b}$ In dioxane with $E_{1 / 2}^{\text {Red }}(1)$ $=-3.18 \mathrm{~V}$ or $E_{1 / 2}^{\mathrm{Ox}}(1)=2.91 \mathrm{~V}$ (consider also note d), $\Delta E_{\text {excit }}=4.65$ eV. ${ }^{c}(-)+$ means (no) reaction; ortho (meta) means formation of ortho (meta)cycloadducts. ${ }^{d}$ Here 1 acts as the donor and 7 as the acceptor (see text).
be rationalized on the basis of the thermodynamics of electron transfer.

Preparative irradiation ($\lambda=254 \mathrm{~nm}$) of 2:1 mixtures in dioxane of $\mathbf{1}$ and of the olefins 2 and 6 respectively (concentration of $\mathbf{1}$: $0.1-0.5 \mathrm{~mol} \mathrm{~L}^{-1}$) results in formation of products 3,4 , and mixtures of ortho, meta, and para cycloadducts $7-9^{3,4}$) in $60-80 \%$ yields

All products were separated by HPLC ${ }^{8}$ and were identified by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR. Cornelisse and Osselton have found the same results in an independent study of the photoreaction of $\mathbf{1}$ with $\mathbf{6 b} .{ }^{9}$ In general substitution to $\mathbf{3}$ and $\mathbf{4}$ is only observed in photoreactions with the 1,3 -dioxoles 2 . Whereas 2 a-c only yield the above mentioned products, the weaker donor olefin 2d already undergoes cycloaddition as the main reaction (90%). This obvious trend is continued in the photoreactions of 5^{7} and 6 , which exclusively proceed under cycloaddition onto the arene 1. ${ }^{3,4}$ If it is assumed that the cycloaddition proceeds through a singlet exciplex ${ }^{2,10,11}$

[^4]
[^0]: (1) Uson, R.; Forniës, J.; Tomăs, M.; Cotton, F. A.; Falvello, L. R. J. Am. Chem. Soc. 1984, 106, 2482.
 (2) Several unpublished studies by the present authors.
 (3) Elemental Anal. Calcd for $\mathrm{C}_{40} \mathrm{H}_{23} \mathrm{~F}_{15} \mathrm{SPAgPt}: \mathrm{C}, 41.57 ; \mathrm{H}, 1.99$. Found: C, 41.79; H, 2.27.
 (4) Space group: $P 2_{1} / n$; $a=14.006$ (2) $\AA, b=17.441$ (3) $\AA, c=17.407$ (2) $\AA ; \beta=110.74(1)^{\circ}, Z=4$. The structure (532 parameters) was refined to 4101 data ($4.0 \leqslant 2 \theta \leqslant 50.0^{\circ}$) with $F_{0}{ }^{2} \geqslant 3 \sigma\left(\mathrm{~F}_{0}^{2}\right)$, gathered on a P3/F diffractometer. Discrepancy indices were $R=0.0414, R_{w}=0.0518$, and quality-of-fit $=0.95$.
 (5) Rotation by 39° about the $\mathrm{Pt}-\mathrm{C}(1)$ bond would make the following changes in nonbonded distances (\AA) : Ag. $\cdot \mathrm{F}(1)$ from 2.76 to $2.31 ; \mathrm{C}(6) \cdot \cdot$ $\cdot F(15)$ from 3.31 to $2.76 ; F(5) \cdots C(18)$ from 4.08 to $2.82 ; F(5) \cdots F(15)$ from 3.20 to $1.86 ; F(1) \cdots P$ from 3.93 to $3.29 ; F(1) \cdots C(23)$ from 3.87 to 3.12 ; $F(1) \cdots C(28)$ from 3.41 to $2.36 ; F(2) \cdots C(27)$ from 3.96 to 2.89 .

[^1]: (6) Several compounds believed to have $\mathrm{Pt}^{11} \rightarrow \mathrm{Ag}^{1}$ single bonds, but also bridging ligands, were reported in 1982.7 Their structures were assigned by analogy with some presumed $\mathrm{Pt}-\mathrm{Hg}$ analogs ${ }^{8}$ with known structures, and therefore $\mathrm{Pt}-\mathrm{Ag}$ distances are not available, although $\mathrm{Ag}-\mathrm{Pt}$ coupling constants (ca. 170 Hz) were reported. ${ }^{9}$
 (7) van der Ploeg, A. F. M. J.; van Koten, G.; Vrieze, K. Inorg. Chem. 1982, 21, 2026.
 (8) van der Ploeg, A. F. M. J.; van Koten, G.; Vrieze, K.; Spek, A. L. Inorg. Chem. 1982, 21, 2014.
 (9) van der Ploeg, A. F. M. J.; van Koten, G.; Brevard, C. Inorg. Chem. 1982, 21, 2878.
 (10) Elemental anal. Calcd for $\mathrm{C}_{56} \mathrm{H}_{46} \mathrm{NOF}_{30} \mathrm{AgPt}_{2}: \mathrm{C}, 36.98 ; \mathrm{H}, 2.53$; $\mathrm{N}, 0.77$. Found: C, $36.98 ; \mathbf{H}, 2.49 ; \mathbf{N}, 0.69$. Compound 2 loses one molecule of crystal ether after 30 min at $80^{\circ} \mathrm{C}$.
 (11) Space group: $P 2_{1} / n ; a=11.278$ (6) $\AA ; b=25.643$ (8) \AA; $c=22.359$ (7) $\AA ; \beta=94.92(3)^{\circ}, Z=4$. The structure (779 parameters) was refined to 4048 data ($4.0 \leqslant 2 \theta \leqslant 47.0^{\circ}$) with $F_{0}{ }^{2} \geqslant 3 \sigma\left(F_{0}{ }^{2}\right)$, gathered on a CAD-4 diffractometer. Final residuals were $R=0.0439, R_{w}=0.0495$, and qualityof $-\mathrm{fit}=1.17$.

[^2]: (12) Malone, J. F.; McDonald, N. S. J. Chem. Soc., Chem. Commun. 1967, 444. Bradford, C. W.; Nyholm, R. S.; Gainsford, G. J.; Guss, J. M.; Ireland, P. R.; Mason, R. J. Chem. Soc., Chem. Commun. 1972, 87.

[^3]: ${ }^{+}$Part 5 of "Selectivity and Charge Transfer in Photoreactions of DonorAcceptor Systems"; for part 4, see ref 1d.
 (1) (a) Mattay, J.; Gersdorf, J.; Santana, I. J. J. Photochem. 1983, 23, 319. (b) Mattay, J.; Gersdorf, J.; Leismann, H.; Steenken, S. Angew. Chem. 1984, 96, 240; Angew, Chem. Int. Ed. Engl. 1984, 23, 249. (c) Mattay, J.; Gersdorf, J.; Freudenberg, U. Tetrahedron Lett. 1984, 817. (d) Gersdorf, J.; Mattay, J. J. Photochem., in press.
 (2) Leismann, H;; Mattay, J.; Scharf, H.-D. J. Am. Chem. Soc. 1984, 106, 3985.
 (3) The results have been partly presented: Mattay, J.; Runsink, J.; Rumbach, T.; Ly, C.; Gersdorf, J. Proc.-IUPAC, Symp. Photochem. 10th, 1984, 257-258.
 (4) A full account on the photocycloadditions with 1 will be published soon.
 (5) Bryce-Smith, D.; Dadson, W. M.; Gilbert, A.; Orger, B. H.; Tyrrell, H. M. Tetrahedron Lett. 1978, 1093.
 (6) Still, I. W. J.; Leong, T. S. Tetrahedron Lett. 1979, 1097.
 (7) Osselton, E. M.; Lempers, E. L. M.; Cornelisse, J. Proc.-IUPAC Symp. Photochem., 10th 1984, 161-162.

[^4]: (8) Chromosorb Si60 column, ethyl acetate-hexane mixture (3-50\% ethyl acetate) as eluate.
 (9) Cornelisse, J.; Osselton, E. M., University of Leiden, Netherlands, private communication.
 (10) Mattay, J.; Runsink, J.; Leismann, H.; Scharf, H.-D. Tetrahedron Lett. 1982, 4919.

